Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy.
نویسندگان
چکیده
Magnetothermally responsive drug-loaded micelles were designed and prepared for cancer therapy. These specially designed micelles are composed of the thermo-responsive star-block copolymer poly(ε-caprolactone)-block-poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate) and Mn, Zn doped ferrite magnetic nanoparticles (MZF-MNPs). The thermo-responses of 6sPCL-b-P(MEO2MA-co-OEGMA) copolymers were shown to be dependent on the MEO2MA to OEGMA ratio. The lower critical solution temperature (LCST) of the star-block copolymers was controlled at 43 °C by adjusting the feed molar ratios of MEO2MA/OEGMA at 92 : 8. With the anti-tumor drug doxorubicin (DOX) self-assembling into the carrier system, the thermo-responsive micelles exhibited excellent temperature-triggered drug release behavior. In vitro cytotoxicity results showed high biocompatibility of the polymer micelles. Efficient cellular proliferation inhibition by the drug-loaded micelles was found on the HepG2 cells under different treatments. The thermo-responsive polymer micelles are promising for controlled drug delivery in tumor therapy under an alternating magnetic field.
منابع مشابه
Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release.
A magnetothermally-responsive nanocarrier was developed for efficient thermo-chemotherapy by combining efficient magnetic hyperthermia (MH) and magnetothermally-facilitated drug release. The effective magnetothermal-response contributed to high enhancement of tumor cell killing by an operating mechanism involving MH-facilitated cellular uptake and Heat Shock Protein over-expression.
متن کاملPoly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release
We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95...
متن کاملEvaluation of triblock copolymeric micelles of δ- valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer
BACKGROUND Specific properties of amphiphilic copolymeric micelles like small size, stability, biodegradability and prolonged biodistribution have projected them as promising vectors for drug delivery. To evaluate the potential of δ-valerolactone based micelles as carriers for drug delivery, a novel triblock amphiphilic copolymer poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone)...
متن کاملCore-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملEnhanced Synergism of Thermo-chemotherapy For Liver Cancer with Magnetothermally Responsive Nanocarriers
A combination of magnetic hyperthermia and magnetothermally-facilitated drug release system was developed as a promising strategy for liver cancer therapy. The thermosensitive copolymer, 6sPCL-b-P(MEO2MA-co-OEGMA) shows a good temperature-controlled drug release response. Mn-Zn ferrite magnetic nanoparticles (MZF-MNPs) exhibit a strong magnetic thermal effect with an alternating magnetic field ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 21 شماره
صفحات -
تاریخ انتشار 2015